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Abstract— Brain region-of-interest (ROI) segmentation with
magnetic resonance (MR) images is a basic prerequisite step
for brain analysis. The main problem with using deep learning
for brain ROI segmentation is the lack of sufficient annotated
data. To address this issue, in this paper, we propose a simple
multi-atlas supervised contrastive learning framework (MAS-CL)
for brain ROI segmentation with MR images in an end-to-end
manner. Specifically, our MAS-CL framework mainly consists
of two steps, including 1) a multi-atlas supervised contrastive
learning method to learn the latent representation using a limited
amount of voxel-level labeling brain MR images, and 2) brain
ROI segmentation based on the pre-trained backbone using
our MSA-CL method. Specifically, different from traditional
contrastive learning, in our proposed method, we use multi-
atlas supervised information to pre-train the backbone for
learning the latent representation of input MR image, i.e., the
correlation of each sample pair is defined by using the label
maps of input MR image and atlas images. Then, we extend
the pre-trained backbone to segment brain ROI with MR
images. We perform our proposed MAS-CL framework with five
segmentation methods on LONI-LPBA40, IXI, OASIS, ADNI,
and CC359 datasets for brain ROI segmentation with MR
images. Various experimental results suggested that our proposed
MAS-CL framework can significantly improve the segmentation
performance on these five datasets.

Index Terms— Contrastive learning, multi-atlas, brain segmen-
tation.
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I. INTRODUCTION

MULTI-ATLAS segmentation methods [1], [2], [3] have
shown effectiveness for brain region-of-interest (ROI)

segmentation with MR images. The basic idea of multi-atlas
segmentation methods is that pair-wise voxels with similar
local appearance should have the same labels. The multi-atlas
segmentation method propagates the labels of atlas images
to the target image based on the calculated local similarity.
Hence, the feature representation of brain MR images is
an important factor for multi-atlas segmentation methods.
However, most traditional multi-atlas segmentation methods
calculate the local similarity by using intensity features.
The simple intensity feature cannot adequately describe the
complex anatomical structure of the brain.

Deep learning methods show great success for feature
representation in medical image analysis tasks [4], [5], [6],
[7], [8], [9], [10], [11], [12]. The deep learning methods
generally need numerous training data to train an effective
deep network for feature representation. However, since the
voxel-level labeling with such high-dimensional 3D brain MR
images is extremely time-consuming, the brain MR images
with voxel-level labeling are difficult to acquire in large
quantities. Hence, there is insufficient labeling MR images
to train a deep learning model for effectively representing
the brain MR images. Recently, to solve the problem of
limited data, many contrastive learning methods [13], [14],
[15], [16], [17], [18], [19], [20], [21] are proposed to learn
feature representation with a small number of training data.
Contrastive learning methods first employ a pretext task
to train a deep neural network, and then use the learned
parameters of the trained deep neural network to fine-tune the
downstream network. In recent contrastive learning methods,
pretext tasks are generally defined in an unsupervised manner.
As shown in Fig. 1, the positive and negative pair of samples
are generated by using the data augmentation operations, i.e.,
crop, cutout, and rotate etc. However, the human brain has
extremely complex anatomical structure, and the intensity MR
images are high-resolution to present the details of brain
anatomical structure. Hence, most common data augmentation
operations are not appropriate for brain ROI segmentation with
MR images.

In summary, the multi-atlas segmentation methods can
utilize the anatomical prior from atlas images to boost
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Fig. 1. Our multi-atlas supervised contrastive learning method generates the
sample pairs based on the supervised information of multiple atlases.

the segmentation performance. The feature representation
is a bottleneck to further improve the performance of
multi-atlas segmentation methods for brain ROI segmenta-
tion with MR images. Meanwhile, deep neural networks
cannot learn an adequate model to represent the MR
images with a limited number of voxel-level labeled MR
images.

To this end, in this paper, we propose a multi-atlas
supervised contrastive learning framework for brain ROI
segmentation with MR images, denoted as MAS-CL. Firstly,
our MAS-CL employs a multi-atlas supervised contrastive
learning module to learn the latent representation of MR
images. Specifically, as shown in Fig. 1, to take advantage of
anatomical prior used in the multi-atlas segmentation methods,
for each target voxel in input MR image, we generate the
corresponding voxels in atlas images. Hence, we can define
the correlation of each pair of voxels based on the labels of
voxels of the target image and atlas images to pre-train the
backbone for brain ROI segmentation. Secondly, we introduce
a segmentation model to obtain the final label map of the target
MR image. Specifically, in this paper, we validate our MAS-
CL framework with three kinds of brain ROI segmentation
methods (five methods), including a multi-atlas segmentation
method (locally-weighed voting), two end-to-end segmentation
networks (U-Net and nnUNet), and two deep-learning based
multi-atlas segmentation method (label fusion network and
anatomical gated U-Net). Various experiments show that our
proposed MAS-CL methods achieve superior segmentation
results on all datasets when compared to several state-of-the-
art methods.

The main contributions of this work are listed in the
following three-fold.

• We propose an end-to-end multi-atlas supervised con-
trastive learning framework for 3D medical image
segmentation. Our method can pre-train the backbone
network without extra data augmentation. In our MAS-
CL framework, we use atlases to define the voxel-level
sample pairs to pre-train the backbones, which is more
effective for medical image segmentation tasks.

• Our framework is very simple and flexible for 3D
medical image segmentation. It can be easily combined
with most brain ROI segmentation methods, such as
multi-atlas segmentation methods and deep learning-
based segmentation methods. Therefore, we implement
our proposed MAS-CL framework with three kinds
of brain ROI segmentation methods, including the
conventional multi-atlas segmentation method, the end-
to-end networks, and deep learning-based multi-atlas
segmentation methods.

• We validate five methods with our MAS-CL framework
on LONI-LPBA40, IXI, OASIS, ADNI, and CC359
datasets. The experimental results on these datasets show
that our MAS-CL framework can significantly improve
the segmentation results.

II. RELATED WORK

A. Multi-Atlas Segmentation

Multi-atlas segmentation methods achieved great success
for brain MR image segmentation [22], [23], [24]. Multi-atlas
segmentation methods assume that the voxels should have the
same label if they have a similar local appearance pattern.
Therefore, the multi-atlas segmentation methods generally
consist of two steps, i.e., 1) the image registration step
aiming to warp the atlas images to the common space of
the to-be-segmented image, and 2) the label fusion step
aiming to propagate the labels of the atlas images to the
to-be-segmented image. Based on the basic assumption,
many multi-atlas segmentation methods are proposed. For
example, the weighted voting methods [25], [26] calculate
the pair-wise patch similarity of the voxels on the target
image and atlas images at the same location. Then, the
pair-wise patch similarity is used as a voting weight to
determine the final label of the target voxel in a weighted
voting manner. Due to the brain MR images exhibiting
extremely complex anatomical structures, the registration step
is inevitable to produce registration errors. To alleviate the
possible registration errors, the idea of non-local is used
in multi-atlas segmentation methods. In the non-local based
multi-atlas segmentation methods [1], [2], [3], the voxel-wise
local appearance similarity is not only calculated with the
candidate voxels at the same location in atlas images but
also with the candidate voxels within the location-specific
region in atlas images. Then, the labels of selected candidate
voxels within the location-specific regions are propagated
to the target voxels. However, these traditional multi-atlas
segmentation methods generally use the intensity features to
calculate the similarity. The simple intensity features cannot
adequately describe the complex anatomical structure of brain
MR images.

Deep neural networks show great feature representation
ability. Therefore, to take advantage of deep neural networks
for representation learning, deep neural networks are used
to learn the representation of MR images for multi-
atlas segmentation. For instance, a deep neural network
is employed [27] to learn the discriminative features of
image patches. Then, they used the learned deep features
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to calculate the voting weights for label fusion based
on the conventional multi-atlas segmentation methods. The
unsupervised deep learning method [28] is employed to learn
the latent representation of brain MR images to calculate the
similarity of patches. However, both conventional multi-atlas
methods and these deep feature representation-based multi-
atlas methods are performed in a voxel-by-voxel manner, these
methods are very time-consuming for brain ROI segmentation
with MR images.

B. Convolutional Neural Networks

Convolutional neural networks are widely used in
image segmentation. Especially, the encoder-decoder architec-
ture [29], [30], [31], [32], [33] can map the target image from
its image space to label map directly. Hence, the encoder-
decoder networks are much faster for image segmentation. The
U-Net and its variants [30], [31], [34] show great performance
for medical image segmentation. U-Net can reuse the high-
resolution spatial feature maps as complementary local details
to improve performance. Recently, many convolutional neural
networks have been proposed for brain ROI segmentation with
MR images. For example, DARTS [35] employs a dense U-Net
for brain ROI segmentation. E2D [36] uses three independently
modified U-Net to segment the hippocampus in sagittal,
coronal, and axial views and then fuses the segmented results
in different views to obtain the final label map. In addition,
some deep learning methods with prior are proposed for brain
ROI segmentation. DeepNAT [37] uses coordinate information
to train the network for brain ROI segmentation. Furthermore,
AG-UNet [38] learns the anatomical prior from multi-atlas
by the convolutional neural network to boost the brain ROI
segmentation performance. However, convolutional neural
networks need a large amount of labeling data to train the deep
model. The voxel-level labeling brain MR images is very rare.
Hence, it is a remaining challenge to train an effective model
for brain MR segmentation.

C. Contrastive Learning

Contrastive learning methods [16], [39], [40], [41], [42],
[43], [44] have been widely used to learn a latent
representation from the limited training data. The classical
contrastive learning methods generally first define the positive
pairs and negative pairs by data augmentation methods. Then,
the defined pairs are used to train the backbone. Hence, the
pre-trained network can be trained with the target dataset.
However, most of these methods train the network for image-
level tasks. For the voxel-level brain MR image segmentation
tasks, it is not very appropriate to define the pair-wise
relationship to calculate the voxel-level contrastive loss for
high-dimensional brain MR images. Inspired by the idea of
multi-atlas segmentation methods, in this paper, we use the
anatomical prior from multiple atlases to define the pair-wise
relationship to pre-train the network.

III. METHODOLOGY

In this section, we first introduce the multi-atlas super-
vised contrastive learning method. We then present the

Fig. 2. Illustration of multi-atlas supervised contrastive learning framework.
The input MR image and multiple atlas images are fed into an encoder-decoder
network. Then, a voxel-level projection head is used to map the learned
features into the latent space. Finally, we maximize agreement based on label
maps of MR image and atlas images in voxel-level.

implementation details of our multi-atlas supervised con-
trastive learning method for brain ROI segmentation.

A. Multi-Atlas Supervised Contrastive Learning

Fig. 2 shows our proposed multi-atlas supervised con-
trastive learning framework. Different from the conventional
contrastive learning methods, we do not use any data
augmentation operation to generate sample pairs. We obtain
the sample pairs from the multiple atlas images. Specifically,
we define the voxel vi in input MR image I and vn, j in atlas
image An are positive pair if vi and vn, j have same labels
(i.e., l(vi ) = l(vn, j )), otherwise are negative pair.

According to the definition, the input MR image I and atlas
image set A = {An|n = 1, . . . , N } are fed into a backbone
encoder-decoder network f (·) to learn the feature maps h I =

f (I ) and h A = {hn = f (An)|n = 1, . . . , N }, respectively.
Where N is the number of atlas images.

Inspired by the projection head widely used in contrastive
learning, we then employ a voxel-level projection head based
on the 1 × 1 × 1 convolutional layer to map these latent
features onto a new space to calculate the contrastive loss.
As shown in Fig. 3, the projection head used in our work
is g(·) = Conv(2)(ReLU(Conv(1)(·))), where Conv(·) is the
convolutional layer with 1 × 1 × 1 kernels, and ReLU(·) is
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Fig. 3. Illustration of the projection head g(·) used in our proposed
multi-atlas contrastive learning module. Conv(·) is the convolutional layer
with 1 × 1 × 1 kernels, and ReLU(·) is ReLU non-linearity.

ReLU non-linearity function. Hence, z I = g(h I ) and z A =

g(h A) = {g(hn)|n = 1, . . . , N }.
Finally, we maximize agreement based on the label maps

of MR image and atlas images. Herein, inspired by the
non-local strategy used in multi-atlas segmentation methods,
we calculate the contrastive loss for our multi-atlas contrastive
learning module in a search region, which can generate more
potential sample pairs. Specifically, the contrastive loss is
not only calculated voxels at the same location in the MR
image and the atlas images, but also between the voxels
in neighboring region R(vi ) of vi in atlas images. More
specifically, we can implement the non-local strategy by
shifting atlas images with the step sizes. The loss function
is defined as,

lossi = − log

∑
n, j δ[l(vi )=l(vn, j )]exp(sim(zi , zn, j )/τ)∑

n, j exp(sim(zi , zn, j )/τ)
, (1)

where vn, j ∈ R(vi ). δ[l(vi )=l(vn, j )] is an indicator function,
which is 1 if l(vi ) = l(vn, j ), and 0 otherwise. τ is
a temperature parameter. sim(zi , zn, j ) is the voxel-wise
similarity between voxels zi and zn, j . In this paper, we define
the voxel-wise similarity as follows,

sim(zi , zn, j ) =
z⊤

i zn, j

||zi ||||zn, j ||
, (2)

where ⊤ and ||a|| are the transpose operation and l2-norm
of vector a, respectively. The overall loss is computed on
the whole voxel of images in a mini-batch. Algorithm 1
summarizes our proposed multi-atlas supervised contrastive
learning method.

B. Implementation for Brain MR Image Segmentation

Our proposed multi-atlas supervised contrastive learning
method is a flexible framework, which can easily combine with
most brain segmentation methods. In this paper, we implement
our proposed multi-atlas supervised contrastive learning
framework with three backbones, including U-Net, nnUNet,
and anatomical gated U-Net (AG-UNet), to learn the feature
representation of the input MR images. The last layer in these
backbones is replaced with our proposed projection heads.
Then, these networks are trained with Eq. 1.

To evaluate the feature representation ability of our MAS-
CL framework, we first implement our MAS-CL with three
kinds of brain segmentation methods based on the U-Net
backbone, including locally-weighted voting (LWV) [25],
U-Net, and label fusion network. The implementation details
are as follows,

Algorithm 1 Multi-Atlas Supervised Contrastive Learning
Algorithm

1) LWV-CL: LWV is a multi-atlas-based segmentation
method. LWV calculates the voting weights between the
to-be-segmented voxel and candidate voxels in atlases at
the same location for label fusion. Herein, we use the
feature representation learned by our multi-atlas supervised
contrastive learning framework based on U-Net to calculate
the similarity.

2) U-Net-CL: U-Net is a classical end-to-end network for
image segmentation. Specifically, a 1 × 1 × 1 convolutional
layer with a Softmax unit following the output of the U-Net
backbone is used to obtain the probability map of the target
MR image. We use the pre-trained U-Net to initial U-Net-CL.

3) LF-CL: We design an end-to-end label fusion network
for brain ROI segmentation, denoted as LF. The architecture
of LF is shown in Fig. 4. Specifically, the proposed network
first uses the backbone f (·) to learn the deep representation of
MR images and atlas images, respectively. Then, the learned
feature maps h I = f (I ) and h A = {hn = f (An)|n =

1, . . . , N } are fed into the convolutional layers q(·) and k(·)

with 1 × 1 × 1 kernels to obtain the feature maps z I = q(h I )

and z A = {zn = k(hn)|n = 1, . . . , N }, respectively. We further
measure the voxel-wise similarity between voxels zi and zn, j
by Eq. 2. Then, we obtain the probability of voxel vi belongs
to c-th ROI by weighted voting,

p(vi,c) =

∑
n, j δ[l(vi )=l(vn, j )] ∗ exp(sim(zi , zn, j ))∑

n, j exp(sim(zi , zn, j ))
(3)

Hence, in the training stage, we can obtain the probability
map by Eq 3. Then, the probability map can be used to
calculate the loss and optimize the network. Specifically,
in this paper, we employ a cross-entropy loss to train the
network as follows

lossce =−
1

N × w × h × d

N∑
j=1

w×h×d∑
i=1

C∑
c=1

δ[l(vi )=c] log p(vi,c),

(4)
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Fig. 4. Illustration of label fusion network. The learned feature maps of MR
images and atlas images are fed into the convolutional layers, respectively.
Then, a voxel-wise similarity between the MR image and atlas images is
calculated. Finally, a label fusion based on the calculated voxel-wise similarity
is performed to obtain the final segmented label map.

where N is batch size. w, h, and d are the dimensions of
the input MR image. In the testing stage, we further use
the maximum a posteriori (MAP) criterion to obtain the final
labels for each voxel vi in the target brain MR image,

l(vi ) = arg max
c

{p(vi,c)}
C
c=1. (5)

Then, we implement our MAS-CL with two state-of-the-
art methods, i.e., nnUNet and AG-UNet. The implementation
details are as follows,

4) nnUNet-CL: We adopt nnU-Net as the backbone.
Similarly, a 1 × 1 × 1 convolutional layer with a Softmax
unit following the nnUNet backbone is used to obtain the
label probability map of the target MR image. We use the
pre-trained parameters to initial nnUNet-CL.

5) AG-UNet-CL: We adopt the AG-UNet as the backbone.
A 1 × 1 × 1 convolutional layer with a Softmax unit
following the AG-UNet backbone is used to obtain the label
probability map of the target MR image. We use the pre-
trained parameters to initial AG-UNet-CL.

IV. EXPERIMENT

In this section, we first present datasets and experimental
settings used in our study. Then, we show the experimental
results for ROI segmentation with brain MR images.

A. Materials

We perform our methods on two public datasets for brain
ROI segmentation with MR images i.e., LONI-LPBA40 [45],
IXI [46], [47], OASIS [48], ADNI [49] and CC359 [50]

datasets. More details of these five datasets are listed as
follows,

1) LONI-LPBA40 [45]: The LONI-LPBA40 dataset is
provided by the Laboratory of Neuro Imaging (LONI)
for whole brain ROI segmentation. This dataset consists
of 40 brain MR images and manually annotated label
maps. The MR images were acquired on a GE 1.5 Tesla
system with 124 contiguous 1.5 mm coronal brain slices.
More specifically, TR is 10.00-12.50 ms, TE is 4.22-
4.50 ms, FOV is 220 mm or 200 mm, in-plane voxel
resolution is of 0.86 mm (38 subjects) or 0.78 mm
(2 subjects).All MR images are also resampled to the
1×1×1 mm3 resolution by using trilinear interpolation
methods. Furthermore, these MR images have already
been rigidly registered to the MNI305 template [45].
For the LONI-LPBA40 dataset, we also first randomly
select 20 MR images as the atlases, and the remaining
20 MR images are randomly divided into 2 subsets for
2-fold cross-validation for whole brain segmentation on
LONI-LPBA40 dataset.

2) IXI [46], [47]: The IXI dataset included 30 adult brain
atlases with 95 ROIs. MRI scans were obtained on the
1.5 Tesla GE Signa Echospeed scanner with voxel sizes
of 0.9375 × 0.9375 × 1.5 mm. For each MR image,
we also perform the skull removal algorithm [51], N4-
based bias field correction algorithm [52], and intensity
standardization algorithm [53]. For the IXI dataset,
we also first randomly select 20 MR images as the
atlases, and the remaining 10 MR images are randomly
divided into 2 subsets for 2-fold cross-validation for
whole brain segmentation on the IXI dataset.

3) OASIS [48]: The OASIS dataset consists of a cross-
sectional collection of 416 subjects aged 18 to 96. The
MR images were acquired with the in-plane resolution
of 1 mm × 1 mm and the slice thickness of 1.25 mm.
100 of the included subjects over the age of 60 have
been clinically diagnosed with very mild to moderate
Alzheimer’s disease (AD). We randomly select 20 MR
images as the atlases, 100 MR images as the training
images, and the remaining MR images as the testing
images.

4) ADNI [49]: We employ 60 subjects from ADNI for
hippocampus segmentation. These brain MR images
were acquired in the sagittal view, with the in-plane
resolution of 1 mm × 1 mm and the slice thickness of
1.2 mm. All images are resampled to have the resolution
of 1×1×1 mm3 with trilinear interpolation. The ground-
truth label maps were created manually to annotate
the right and left hippocampus regions in the brain.
We perform pre-processing for all MR images via three
procedures, including skull removal [51], N4-based bias
field correction [52], and intensity standardization [53].
We randomly select 20 subjects as atlases, and the
remaining images are randomly split into 2 subsets for
2-fold cross-validation on ADNI.

5) CC359 [50]: The CC359 dataset consists of 359 subjects
with an age range from 29 to 80 years. The MR
images were acquired on scanners from three vendors
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(Siemens, Philips, and General Electric) at both 1.5 T
and 3 T. Post-hoc testing with Bonferroni correction
demonstrated that only the Philips 3 T and Siemens
3 T group age. We also perform the hippocampus
segmentation task on the CC359 dataset. We randomly
select 20 subjects as atlases, and the remaining images
are randomly split into 2 subsets for 2-fold cross-
validation.

B. Experimental Settings

We compared our LWV-CL, U-Net-CL, and LF-CL with
their counterparts without using our multi-atlas supervised
contrastive learning framework, denoted as LWV, U-Net, and
LF, respectively. We use the cross-entropy loss to train the
deep learning models. The learning rate and epoch are set
to 0.001 and 100, respectively. Similar to literature [16],
we also froze the backbone network. Meanwhile, we do not
use the non-local strategy in our experiments. Instead, we only
generate the sample pairs at the same location of the target
image and atlas images. Hence, the segmentation performance
is used as a proxy for representation quality.

We set the number of atlas images to 20. We set the
mini-batch size as 1. Hence, each mini-batch has 20 sample
pairs. Besides, we perform the affine registration [54] and
deformable registration [55] algorithms on the atlas images
to map the atlas images onto the same space as the target
image.

Two main evaluation metrics are leveraged to evaluate the
segmentation performance of our proposed methods and their
competing methods. We first employ the Dice coefficient (DC)
to assess the segmentation performance, which is defined as,

DC =
2|R1 ∩ R2|

|R1| + |R2|
, (6)

where R1 and R2 denote the segmented region and the
ground truth, respectively. The term ∩ is used to reflect the
overlap between R1 and R2, i.e., the number of voxels of
the intersecting regions. |a| is the number of voxels of region
a. Meanwhile, we use the sensitivity (SEN) to evaluate the
performance of different segmentation methods for brain ROI
segmentation, which is defined as,

SE N = =
T P

T P + F N
, (7)

where TP and FN are True Positive and False Negative,
respectively.

C. Results on LONI-LPBA40

We first validate our LWV-CL, U-Net-CL, nnUNet-CL, LF-
CL, and AG-UNet-CL methods on the LONI-LPBA40 dataset
for ROI segmentation with brain MR images. The average
Dice coefficient (DC) and sensitivity (SEN) are reported in
Table I.

As can be seen from Table I, our AG-UNet-CL achieves the
best segmentation results in the Dice coefficient. AG-UNet-CL
gains with 0.0364, 0.0194, 0.0354, 0.0198, 0.0215, 0.0040,
0.0238, 0.0102, and 0.0163 increments in Dice coefficient

TABLE I
SEGMENTATION RESULTS ACHIEVED BY DIFFERENT METHODS ON

THE LONI-LPBA40 DATASET. THE TERMS a AND b IN “a ± b”
DENOTE THE MEAN AND STANDARD DEVIATION FOR DIFFERENT

SUBJECTS, RESPECTIVELY. THE SYMBOL ‘*’ INDICATES THAT
OUR PROPOSED METHOD CAN SIGNIFICANTLY IMPROVE

ITS CONVENTIONAL COUNTERPART BASED ON THE
WILCOXON SIGNED RANK TEST IN TERMS OF DC

over LWV, LWV-CL, U-Net, U-Net-CL, nnUNet, nnUNet-
CL, LF, and LF-CL, respectively. Meanwhile, AG-UNet-CL
also achieves the best performance in terms of sensitivity.
In addition, using our proposed MAS-CL framework, LWV-
CL, U-Net-CL, nnUNet-CL, LF-CL, and AG-UNet achieve
better segmentation performance over LWV, U-Net, nnUNet,
LF, and AG-UNet in both Dice coefficient and sensitivity,
respectively. We perform the Wilcoxon signed rank test
in Dice coefficient results achieved by our methods with
their counterparts, respectively. Our LWV-CL, U-Net-CL,
nnUNet-CL, LF-CL, and AG-UNet-CL suggest significant
improvement (p < 0.05) over LWV (p = 8.8575e − 05),
U-Net (p = 1.0335e − 04), nnUNet(p = 8.8575e − 05),
LF (p = 8.8575e−05), and AG-UNet (p = 8.8575e−05) for
brain ROI segmentation task, respectively. These results imply
that our proposed multi-atlas supervised contrastive learning
framework can learn better latent representation for brain ROI
segmentation on LONI-LPBA40 datasets.

Fig. 5 plots the violin visualization of Dice coefficient
values achieved by U-Net-CL, nnUNet-CL, LF-CL, AG-
UNet-CL, and their counterparts on 54 ROIs. As shown in
Fig. 5, U-Net-CL, nnUNet-CL, LF-CL, and AG-UNet-CL
with our multi-atlas supervised contrastive learning framework
outperforms U-Net, nnUNet, LF, and AG-UNet in most ROIs,
respectively.

In Fig. 6, we further show the surface distance between the
segmentation results of different methods and ground truth on
three different sizes of ROIs, including the superior frontal
gyrus with more than 100,000 voxels, the precuneus with
about 20,000 voxels, and the hippocampus with about 6,000
voxels. As shown in Fig. 6, our proposed methods achieved
better quality segmentation results when compared with their
conventional counterparts, respectively.

D. Results on IXI

We then compared our LWV-CL, U-Net-CL, nnUNet-CL,
LF-CL, and AG-UNet-CL with their counterparts on the IXI
dataset for brain ROI segmentation. The segmentation results
achieved by different methods are reported in Table II.
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Fig. 5. Segmentation result of 54 ROIs on the LONI-LPBA40 dataset achieved by U-Net, U-Net-CL, nnUNet, nnUNet-CL, LF, LF-CL, AG-UNet, and
AG-UNet-CL in terms of Dice coefficient values.

From Table II, we can see that the Dice coefficient
on the IXI dataset are 0.7796, 0.7714, 0.7900, 0.7862,
and 0.8007 achieved by our LWV-CL, U-Net-CL, nnUNet,

LF-CL, and AG-UNet-CL, which are better than their
counterpart (i.e., LWV, U-Net, nnUNet, LF, and AG-UNet),
respectively. Meanwhile, our LWV-CL, U-Net-CL, nnUNet,
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Fig. 6. Visual illustration of the surface distance between the segmentation
results of different methods and ground truth on the superior frontal gyrus,
precuneus, and hippocampus.

TABLE II
SEGMENTATION RESULTS ACHIEVED BY DIFFERENT METHODS ON THE

IXI DATASET. THE TERMS a AND b IN “a±b” DENOTE THE MEAN AND
STANDARD DEVIATION FOR DIFFERENT SUBJECTS, RESPECTIVELY.

THE SYMBOL ‘*’ INDICATES THAT OUR PROPOSED METHOD
CAN SIGNIFICANTLY IMPROVE ITS CONVENTIONAL COUN-

TERPART BASED ON THE WILCOXON SIGNED RANK
TEST IN TERMS OF DC

LF-CL, and AG-UNet-CL methods also achieve better results
in terms of sensitivity. We also perform the Wilcoxon signed
rank test in Dice coefficient results achieved by different

TABLE III
SEGMENTATION RESULTS ACHIEVED BY DIFFERENT METHODS ON THE

OASIS DATASET. THE TERMS a AND b IN “a ± b” DENOTE
THE MEAN AND STANDARD DEVIATION FOR DIFFERENT SUB-

JECTS, RESPECTIVELY. THE SYMBOL ‘*’ INDICATES THAT
OUR PROPOSED METHOD CAN SIGNIFICANTLY IMPROVE

ITS CONVENTIONAL COUNTERPART BASED ON THE
WILCOXON SIGNED RANK TEST IN TERMS OF DC

methods. Our LWV-CL, U-Net-CL, nnUNet-CL, LF-CL, and
AG-UNet-CL still achieve a significant improvement (p <

0.05) over LWV (p = 0.0020), U-Net (p = 0.0098), nnUNet
(p = 1.9531e − 3), LF (p = 0.0020), and AG-UNet (p =

1.9531e − 3) for brain ROI segmentation task, respectively.
These results further show that using our proposed multi-atlas
supervised contrastive learning framework can boost the brain
ROI segmentation results. Fig. 7 shows that our U-Net-CL,
nnUNet-CL, LF-CL, and AG-UNet-CL outperforms U-Net,
nnUNet, LF, and AG-UNet in most ROIs, respectively.

E. Results on OASIS

In the third group of experiments, we compare our methods
with their counterparts on the OASIS for the brain ROI
segmentation. The segmentation results on the OASIS dataset
are reported in Table III.

As shown in Table III, the methods with our MAS-CL
framework archive better segmentation results than their
counterparts in terms of Dice coefficient and sensitivity.
Our LWV-CL, U-Net-CL, nnUNet-CL, LF-CL, and AG-
UNet-CL archive 0.0209, 0.0229, 0.0248, 0.0363, and
0.0141 improvement in Dice coefficient over LWV, U-Net,
nnUNet, LF and AG-UNet, respectively. Fig. 8 plots the
violin visual of Dice coefficient values achieved by U-Net-CL,
nnUNet-CL, LF-CL, and AG-UNet-CL, and their counterparts
on 32 ROIs. As shown in Fig. 8, our U-Net-CL, nnUNet-CL,
LF-CL, and AG-UNet-CL also outperforms U-Net, nnUNet,
LF, and AG-UNet in most ROIs.

We also perform the Wilcoxon signed rank test in Dice
coefficient results achieved by different methods. Our LWV-
CL, U-Net-CL, nnUNet-CL, LF-CL, and AG-UNet-CL still
achieve a significant improvement (p < 0.05) over LWV
(p = 1.9369e − 34), U-Net (p = 2.3502e−37), nnUNet (p =

3.4273e − 37), LF (p = 8.0048e − 38), and AG-UNet (p =

2.3502e − 37) for brain ROI segmentation task, respectively.

F. Results on ADNI

In the fourth group of experiments, we perform our methods
and their counterparts on the ADNI dataset for hippocampus
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Fig. 7. Segmentation result of 95 ROIs on the IXI dataset achieved by U-Net, U-Net-CL, nnUNet, nnUNet-CL, LF, LF-CL, AG-UNet, and AG-UNet-CL
in terms of Dice coefficient values.

segmentation. Table IV reports the results achieved by
different methods on the ADNI dataset.

One can observe from Table IV, our LWV-CL, U-Net-CL,
nnUNet-CL, LF-CL, and AG-UNet-CL still achieve better

Authorized licensed use limited to: Univ of Calif San Francisco. Downloaded on August 27,2024 at 22:09:03 UTC from IEEE Xplore.  Restrictions apply. 



4328 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024

Fig. 8. Segmentation result of 32 ROIs on the OASIS dataset achieved by U-Net, U-Net-CL, nnUNet, nnUNet-CL, LF, LF-CL, AG-UNet, and AG-UNet-CL
in terms of Dice coefficient values.

TABLE IV
SEGMENTATION RESULTS ACHIEVED BY DIFFERENT METHODS ON THE

ADNI DATASET. THE TERMS a AND b IN “a ± b” DENOTE
THE MEAN AND STANDARD DEVIATION FOR DIFFERENT SUB-

JECTS, RESPECTIVELY. THE SYMBOL ‘*’ INDICATES THAT
OUR PROPOSED METHOD CAN SIGNIFICANTLY IMPROVE

ITS CONVENTIONAL COUNTERPART BASED ON THE
WILCOXON SIGNED RANK TEST IN TERMS OF DC

results on one brain ROI segmentation task. For example,
our AG-UNet-CL gains 0.0141 and 0.0297 improvement
over AG-UNet in terms of Dice coefficient and sensitivity,
respectively. We perform the Wilcoxon signed rank test in

Dice coefficient results achieved by different methods. Our
LWV-CL, U-Net-CL, nnUNet-CL, LF-CL, and AG-UNet-CL
still achieve a significant improvement (p < 0.05) over LWV
(p = 5.2463e − 4), U-Net (p = 3.5694e − 08), nnUNet
(p = 3.7583e − 07), LF (p = 3.5694e − 08), and AG-
UNet (p = 1.4758e − 07) for hippocampus segmentation
task, respectively. These results suggest that our multi-atlas
supervised contrastive learning framework also can improve
the segmentation performance on one brain ROI segmentation
task.

Fig. 9 plots the surface distance between the hippocampus
segmentation results of different methods and ground truth.
As can be seen from Fig. 9, the methods with our MAS-CL
framework generate better visual quality, compared with their
counterparts, respectively. These results further demonstrate
the effectiveness of our proposed multi-atlas supervised
contrastive learning framework in hippocampus segmentation
tasks on the ADNI dataset.

G. Results on CC359

In the fifth group of experiments, we validate our methods
on the CC359 dataset for hippocampus segmentation, with the
results reported in Table V.
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Fig. 9. Visual illustration of the surface distance between the hippocampus segmentation results of different methods and ground truth on the ADNI dataset.

Fig. 10. Visual illustration of the surface distance between the hippocampus segmentation results of different methods and ground truth on the CC359 dataset.

TABLE V
SEGMENTATION RESULTS ACHIEVED BY DIFFERENT METHODS ON THE

CC359 DATASET. THE TERMS a AND b IN “a ± b” DENOTE THE
MEAN AND STANDARD DEVIATION FOR DIFFERENT SUBJECTS,

RESPECTIVELY. THE SYMBOL ‘*’ INDICATES THAT OUR
PROPOSED METHOD CAN SIGNIFICANTLY IMPROVE ITS

CONVENTIONAL COUNTERPART BASED ON WILCOXON
SIGNED RANK TEST IN TERMS OF DC

As shown in Table V, our methods also achieve better
results than their counterparts in both Dice coefficient and
sensitivity. Our LWV-CL, U-Net-CL, nnUNet-CL, LF-CL, and
AG-UNet-CL achieve 0.0233, 0.0167, 0.0106, 0.0143, and
0.0144 improvement over LWV, U-Net, nnUNet, LF, and AG-
UNet, respectively. We also perform the Wilcoxon signed rank
test in Dice coefficient results achieved by different methods.
Our LWV-CL, U-Net-CL, nnUNet-CL, LF-CL, and AG-UNet-
CL still achieve a significant improvement (p < 0.05) over
LWV (p = 2.8556e − 51), U-Net (p = 3.5872e − 56),

TABLE VI
SEGMENTATION RESULTS ACHIEVED BY U-NET ON THE LONI-LPBA40

DATASET WITH DIFFERENT DATA AUGMENTATION METHODS. THE
SYMBOL ‘*’ INDICATES THAT OUR U-NET-CL METHOD ACHIEVES

SIGNIFICANT IMPROVEMENT OVER THE COMPETING METHOD
BASED ON THE WILCOXON SIGNED RANK TEST IN TERMS

OF DC

nnUNet (p = 9.8809e − 51), LF (p = 4.1842e − 56), and
AG-UNet (p = 3.9272e − 56) for brain ROI segmentation
task, respectively.

Fig. 10 plots the surface distance between the hippocampus
segmentation results of different methods and ground truth.
Our LWV-CL, U-Net-CL, nnUNet-CL, LF-CL, and AG-UNet-
CL also generate better visual quality, compared with their
counterparts.

H. Comparison With Data Augmentation Methods

Data augmentation methods can help train deep networks.
To compare our proposed MAS-CL framework with the
data augmentation method, we compared our methods with
two commonly used data augmentation methods in deep
learning-based medical image segmentation, i.e., rotation, and
registration. Specifically, we train the U-Net with the rotation
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TABLE VII
THE DICE COEFFICIENT VALUES ACHIEVED BY DIFFERENT METHODS

ON THE LONI-LPBA40 DATASETS. SYMBOL # IS THE TRAINING
NUMBER. THE SYMBOL ‘*’ INDICATES THAT OUR AG-UNET-CL

METHOD ACHIEVES SIGNIFICANT IMPROVEMENT OVER THE
STATE-OF-THE-ART METHOD BASED ON THE WILCOXON

SIGNED RANK TEST IN TERMS OF DC

and registration data augmentation methods, denoted as U-Net-
RO and U-Net-RE, respectively. More specifically, we rotate
the 3D MR image across sagittal, coronal, and axial sections.
Meanwhile, we use the FLIRT method in the FSL [54]
toolbox to register each pair of training data. Hence, we have
40 and 100 training data to train the deep learning model
for brain ROI segmentation on LONI-LPBA40 datasets. The
experimental results are reported in Table VI.

One can observe from Table VI, all our U-Net-CL and
the data augmentation methods can improve the brain ROI
segmentation on LONI-LPBA40 datasets. Furthermore, our U-
Net-CL achieves a better brain ROI segmentation performance,
when compared with the U-Net trained with data augmentation
methods. We also perform the Wilcoxon signed rank test in
Dice coefficient results achieved by our UNet-CL with the
data augmentation methods. Our UNet-CL method suggests
significant improvement (p < 0.05) over U-Net-RO (p =

8.8575e − 05) and U-Net-RE (p = 8.8575e − 05) for brain
ROI segmentation task, respectively. These results suggest
that our proposed multi-atlas supervised contrastive learning
framework can learn a better latent representation of MR
images than data augmentation by rotation and registration
operations.

I. Comparison With Deep Learning Methods

In this section, we compared our LF-CL and AG-
UNet-CL methods with four deep learning methods for
54 brain ROI segmentation on LONI-LPBA40 dataset,
including DeepNAT [37], SLANT [56], DARTS [35], and
AG-UNet [38]. To better demonstrate our proposed MAS-
CL framework can train an effective model with limited
data, we train the competing state-of-the-art methods with
more training data. Herein, we perform 5-fold cross-validation
for the competing methods. Hence, the competing methods
have 16 subjects to train the deep models on the LONI-
LPBA40 dataset. The state-of-the-art methods use the default
settings provided in the literature. In addition, we also reported
the LF method trained with 16 subjects.

As shown in Table VII, our proposed LF-CL and AG-UNet-
CL achieve the second-best and best Dice coefficient and
sensitivity values on the LONI-LPBA40 dataset. For example,
our AG-UNet-CL achieves 0.0397, 0.0313, 0.0358, 0.0119,

and 0.0165 improvement over DeepNAT, SLANT, DARTS,
AG-UNet, and LF on LONI-LPBA40 dataset, respectively.
It is worth noting that our LF-CL and AG-UNet-CL only
use 10 MR images to train our LF-CL and AG-UNet-CL
model on the LONI-LPBA40 dataset, while the competing
methods use 16 MR images to train their corresponding
models. In addition, the segmentation results of the LF and
AG-UNet methods using 16 MR images are better than those
using 10 MR images. It implies that the training number is an
important factor for deep learning methods. However, using
our MAS-CL framework, the LF-CL and AG-UNet-CL still
achieve better segmentation performance with fewer training
data. These results further demonstrate using our multi-atlas
supervised contrastive learning framework can learn better
feature representation with a limited amount of labeling
images for brain ROI segmentation tasks.

We perform the Wilcoxon signed rank test in Dice
coefficient results achieved by our AG-UNet-CL with state-
of-the-art deep learning methods. Our AG-UNet-CL method
suggests significant improvement (p < 0.05) over DeepNAT
(p = 8.8575e − 05), SLANT (p = 1.2042e − 05), DARTS
(p = 8.8575e − 05), AG-UNet (p = 1.4013e − 04) and
LF (p = 8.8575e − 05) for brain ROI segmentation task,
respectively.

V. DISCUSSION

In this section, we first study the influence of search
region size for our proposed multi-atlas supervised contrastive
learning framework and LF-CL method. Then, we study the
influence of the number of atlases for our proposed method.
Finally, we present the limitations of this work as well as
possible future research directions.

A. Influence of Search Region Size for Multi-Atlas
Supervised Contrastive Learning

The size of search region R(vi ) is an important factor in
multi-atlas segmentation methods. To investigate the influence
of search region size for our proposed multi-atlas supervised
contrastive learning step, we generate sample pairs in larger
search region sizes to pre-train the networks for brain ROI
segmentation with MR images. Herein, we set the search
region size as 1×1×1, 3×3×3, and 5×5×5, respectively.
For a fair comparison, we randomly generate 20 sample pairs
in each mini-batch. The results achieved by LF-CL with
different search region sizes and training epochs in multi-atlas
supervised contrastive learning step on the LONI-LPBA40
dataset are shown in Fig. 11.

We perform the Wilcoxon signed rank test in Dice
coefficient results achieved by the LF-CL with different search
region sizes and training epochs in the multi-atlas supervised
contrastive learning step. The larger search region size and
training epochs do not show significant differences with
smaller search region size and training epochs. These results
demonstrate that our MAS-CL method is not very sensitive to
the search region size when compared with the conventional
multi-atlas methods. The possible reason is that the deep
learning model can learn high-level contextual features from
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Fig. 11. Segmentation results achieved by LF-CL with different search region
size and training epochs in multi-atlas supervised contrastive learning step on
LONI-LPBA40 dataset.

Fig. 12. Segmentation results achieved by LF-CL with different search region
sizes in label fusion step on LONI-LPBA40 dataset.

multiple local receptive fields, which can also provide non-
local information about brain MR images. Meanwhile, the
experimental results also demonstrate our proposed MAS-
CL framework has good convergence. However, as shown in
Fig. 11, we find that a larger search region size in a multi-
atlas supervised contrastive learning step can improve the
performance of our LF-CL method with a larger training epoch
number.

B. Influence of Search Region Size for LF-CL Method

The non-local strategy can improve segmentation perfor-
mance in the label fusion step. Thus, we also study the
influence of search region size for our LF-CL method.
We set the search region size at the label fusion stage as
1 × 1 × 1, 3 × 3 × 3, and 5 × 5 × 5, respectively. To control
variables, we use the pre-trained backbone with 1 × 1 × 1
search region size to initialize model parameters. The results
achieved by LF-CL with different search region sizes in the
label fusion step on the LONI-LPBA40 dataset are shown
in Fig. 12.

As shown in Fig. 12, we find that larger search region size
in our LF-CL method also can improve the performance of
brain ROI segmentation on LONI-LPBA40 datasets. However,
we perform the Wilcoxon signed rank test in Dice coefficient
results achieved by the LF-CL with different search region
sizes in the label fusion step. The larger search region
size also does not show significant differences with the
smaller search region. These results further indicate that deep
learning-based methods can learn better local features of
brain MR images, which are not very sensitive to the search
region size.

Fig. 13. Segmentation results achieved by LF-CL with different atlas numbers
on LONI-LPBA40 dataset.

C. Influence of Atlas Number

We further study the influence of atlas number for
our proposed multi-atlas supervised contrastive learning
framework. We set the atlas numbers as 5, 10 and 20. The
segmentation results achieved by LF-CL with different atlas
numbers on the LONI-LPBA40 dataset are shown in Fig. 13.

One can observe that the larger atlas number can improve
the brain ROI segmentation results on LONI-LPBA40 datasets.
We further perform the Wilcoxon signed rank test in Dice
coefficient results achieved by the LF-CL with different
atlas numbers. LF-CL with 20 atlases shows a significant
improvement (p < 0.05) over LF-CL with 5 (p = 8.8575e −

05) and 10 (p = 8.8575e − 05) atlases. There are two main
reasons. First, more atlas images provide more sample pair
combinations to improve the feature representation ability in
the multi-atlas supervised contrastive learning step. Second,
more atlas images can provide more sufficient anatomical prior
of brain structure to improve the segmentation performance in
the label fusion step.

D. Discussion of Results on All Datasets

We perform our MAS-CL framework on five datasets (i.e.,
LONI-LPBA40, IXI, OASIS, ADNI, and CC359). LONI-
LPBA40, IXI, and OASIS datasets are used for multiple ROI
segmentation tasks, and the remaining ADNI and CC359
datasets are used for the hippocampus segmentation. The
results on all datasets suggest that using the pre-trained
parameters to initial the backbones can significantly improve
the segmentation performance. We still have two observations
as follows.

Firstly, training models with larger datasets yield better
segmentation results. For example, the DC values of AG-
UNet-CL are 0.8007, 0.8186, and 0.8982 for multiple ROI
segmentation on IXI, LONI-LPBA40, and OASIS datasets
with 5, 10, and 100 training data, respectively. Similarly,
the DC values of AG-UNet-CL are 0.9121 and 0.9337 for
hippocampus segmentation on ADNI and CC395 datasets with
20 and 166/167 training data, respectively.

Secondly, the multiple ROI segmentation tasks benefit
more from the anatomical structure prior to guide the
segmentation process. As shown in Tables I, II, and III,
the AG-UNet-CL achieves the best segmentation performance
for multiple ROI segmentation tasks. Tables IV and V, the
U-Net-CL, nnUNet-CL, and AG-UNet-CL achieve similar
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segmentation performance for hippocampus segmentation. U-
Net-CL and nnUNet-CL even achieve better segmentation
performance on the CC359 dataset. This discrepancy likely
arises because multiple ROI segmentation tasks are inherently
more complex and require detailed anatomical structure priors
to accurately capture the brain’s complex anatomy. In contrast,
hippocampus segmentation is relatively simpler, requiring only
the differentiation between the hippocampus and surrounding
regions. Especially, the U-Net-CL and nnUNet-CL models are
able to effectively learn features with the increased training
data available on the CC359 dataset.

E. Limitations and Future Work

There are still several limitations in the current work.
First, multi-atlas methods are widely used in the field of
medical image segmentation. In our work, we only apply
our MAS-CL framework to the brain ROI segmentation task.
In future work, we will evaluate our proposed MAS-CL in
other medical image segmentation tasks. Second, our proposed
MAS-CL method is a general framework for end-to-end
networks, we only evaluate it with three classical methods for
brain ROI segmentation. In the future, more commonly used
networks, e.g., TransUNet [57] and Swin-UNet [58], etc., can
be trained by our proposed MAS-CL framework for medical
image segmentation tasks.

VI. CONCLUSION

In this paper, we propose an end-to-end multi-atlas
supervised contrastive learning framework for brain ROI
segmentation with MR images. In our MAS-CL framework,
we use supervised anatomical structure information of brain
MR images to pre-train the network. By using our proposed
framework, we can easily generate the contrastive sample
pairs at voxel-level to train the end-to-end networks. Extensive
experimental results on LONI-LPBA40, IXI, OASIS, ADNI,
and CC359 datasets demonstrate our proposed contrastive
learning framework can learn more useful feature represen-
tation for brain ROI segmentation.
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